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Introduction. Investigation of localized energy

distributions described by solutions of nonlinear

field equations with nontrivial topological proper-

ties is the important approach to nonperturbative

field theory. In [1] we propose a classification of lo-

calized topological solutions (often called topologi-

cal lumps, TL) which differs from the standard one

but seems to be more instructive, in particular when

studying new multidimensional (D = 2, 3) particle-

like solutions with topological charges.

Historically the first localized solutions with non-

trivial topology were skyrmions, found in [2] and

used for the description of baryons. In our classifi-

cation they are topological solitons (TS). More than

10 years later great interest has been drawn to the

2D Nielsen-Olesen strings-vortices [3] and to the 3D

’t Hooft-Polyakov hedgehog-monopoles [4, 5]; these

solutions – in our classification – belong to topo-

logical defects (TD). Note that the above strings-

vortices and hedgehog-monopoles have been discov-

ered during the great solitonic boom of 70’s, and

that is why they were ascribed to the wide class of

solitons (lumps). However we believe that the usage

of the same term “a soliton” both for TSs and TDs

may turn out misleading in some cases (for an exam-

ple see the last Section, where TLs in the Standard

Model are discussed).

Definitions. Both topological defects, TD, and

topological solitons, TS, describe particle-like (ex-

tended localized, lumps) distributions of field en-

ergy, but they (TDs and TSs) differ in topological

properties.

For TSs field distributions in RD of all fields in-

volved are uniform at space infinity, R → ∞ (see

for example Fig.1, where space distribution of 3-

component unit Heisenberg field in magnetic soli-

ton is depicted). We consider SN -valued field with

N = D; then for TSs topological charge (index) is a

mapping degree of the SN -valued field distribution

inside infinite radius (R = ∞) sphere SD−1, which

is considered – because of constancy of all fields on

it – as the single point. The space RD is compact-

ified by adding this infinite point, and thus soliton

maps RD
comp → SN .

Contrary to TSs Topological Defects are given

by SN -valued field distributions, which are nonuni-

form at R = ∞. Their topological indices are

mapping degrees of the R = ∞ sphere SD−1 to

Figure 1: TS with Qtop = 1 in Heisenberg magnet

(for details see [6]).

a SN sphere defined by the field distribution on

this sphere, SD−1
→ SN , N = D − 1. From above

definitions it is clear that Topological Defects are

not Topological Solitons, and vice versa, Topologi-

cal Solitons are not Topological Defects.

Examples of Topological Solitons and De-

fects. Now we present some examples of TSs and

TDs in D=2 and D=3.

1. Topological Solitons: solitons in Heisenberg

magnets (2D, 3D) [6], Belavin-Polyakov soli-

tons/instantons (2D) [7], Skyrmions (3D) [2],

“baby-skyrmions” (2D), see, e.g.[8].

2. Topological Defects: sine-Gordon kinks (1D),

Nielsen-Olesen strings-vortices in the Abelian

Higgs model (2D) [3], ’t Hooft-Polyakov

hedgehog-monopoles in the Georgi-Glashow

model (3D) [4, 5].

Drawbacks of Topological Defects. We

believe that TDs have some drawbacks, which

are connected with nonuniformity of SN -valued

field at R = ∞ (see Fig.2, left). The first of

them is that they cannot be generated from

unperturbed vacuum state in a finite time. The

second one is a problem of matching two (or

more) defects. It can be clearly illustrated in

two-dimensional (D = 2) case for S1-valued field.

In fact, consider two well-separated defects with

unit topological charge (see Fig.2, right), so that

the center of the first one is located on the x-axis

at x1 = −∞, and the centre of the second one

at x2 = +∞. Then from Fig.2, right one can

see that in the vicinity of vertical line x = 0 it is

impossible to define distribution of S1 field which is
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Figure 2: Left: isolated defect solution, D = 2, S1-valued field. Right: problems with matching two D = 2 defects.

consistent with asymptotic behavior of both defects

in this vicinity. To circumvent the second problem

one can either insert “junctions” in between defects

or consider multidefects configurations. Both ways

seems to be not quite satisfactory.

In the case of TSs one doesn’t encounter such dif-

ficulties. That is why we are interested in search

of solitonic analogs of topological defects both in

D = 2 and D = 3 cases; in other words, it is in-

teresting and important to find soliton analogs of

Nielsen-Olesen strings-vortices in D = 2 and of ’t

Hooft-Polyakov monopoles-hedgehogs in D = 3.

Topological Solitons in the A3M model. In-

stead of complex scalar field in the Abelian Higgs

model (AHM) in the A3M model (see [1] and Refs.

therein) we introduce 3-component unit isovector

scalar field sa(x) taking values on unit sphere

S2 : sasa = 1, a = 1, 2, 3, having selfinteraction of

so-called “easy-axis” type (well-known in the mag-

netism theory). Similar to AHM introduce gauge-

invariant interaction of this field with the Maxwell

field, making global U(1) symmetry of easy-axis

magnets local one. As a results we arrive at “the

A3M model”. The Lagrangian density of the A3M-

model is

L = D̄µs−D
µs+ + ∂µs3∂

µs3 − V (sa) −
1

4
F 2

µν ,

D̄µ = ∂µ + ieAµ, Dµ = ∂µ − ieAµ,

s+ = s1 + is2, s
−

= s1 − is2,

Fµν = ∂µAν − ∂νAµ, V (sa) = β(1 − s23), (1)

µ, ν = 0, 1, ..., D. This model is the gauge-invariant

extension of the classical Heisenberg antiferromag-

net model with the easy-axis anisotropy. It supports

D = 2 topological solitons, which can be found

using the ”hedgehog” ansatz for the unit isovector

field si(x), i = 1, 2, 3,

s1 = cosmχ sinϑ(R), s2 = sinmχ sinϑ(R),

s3 = cosϑ(R),

sinχ =
y

R
, cosχ =

x

R
, R2 = x2 + y2, (2)

where m is an integer number, and the ”vortex”

ansatz for the Maxwell field Aµ(x),

A0 = 0, A1 = Ax = −ma(R)
y

R2
,

A2 = Ay = ma(R)
x

R2
. (3)

The topological charge of A3M solitons is defined as

the mapping degree of sa(x) distributions inside in-

finite radius (R = ∞) sphere, R2
comp → S2. Bound-

ary conditions correspond to uniform distribution

of the sa(x) field at R = ∞, and zero value of the

Maxwell field Aµ(x) at space infinity. A3M solitons

exist for integer Qtop – similar to Belavin-Polyakov

2D solitons in isotropic Heisenberg magnet.

Energy of two solitons with Qtop = 1 proves to be

greater than energy of one soliton with Qtop = 2.

As a result two such solitons attract to each other

and coalesce into one Qtop = 2 soliton. Thus soli-

ton analogs of Nielsen-Olesen TDs in the AHM have

been found.

Topological Solitons in the SU2-Higgs model.

Consider the simplest electroweak (EW) model (a

reduction of the bosonic sector of the Weinberg-

Salam model), the so-called SU2-Higgs model with

L = (DµΦ)†(DµΦ) −
1

4
F a

µνF
aµν

− (Φ†Φ − 1)2,

DµΦb = ∂µΦb +
i

2
gτaAa

µΦb,

µ = 0, 1, 2, 3, a = 1, 2, 3, b = 1, 2, (4)

here Φ is the 2-component complex isospinor,

defined by 4 real numbers ϕc, such that

ϕcϕc = 1, c = 1, 2, 3, 4. Introduce unit isospinor

field

Φ̃ = Φ/

√

Φ†Φ and ϕ̃a = ϕa/
√

ϕcϕc, (5)

a = 1, 2, 3, 4 so that normalized field ϕ̃a

takes values on unit sphere S3. The SU2-

Higgs model describes gauge-invariant inter-

action of SU(2) Yang-Mills field with the

isospinor scalar field. Let boundary conditions at

R = ∞, R2 = x2 + y2 + z2: be ϕ̃c(∞) = ϕ̃c
0,

with ϕ̃c
0 = (0, 0, 0, 1), or ϕ̃c

0 = (0, 0, 0,−1).

The topological charge Qtop can be defined
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as the mapping degree of R3
comp → S3 given by dis-

tribution of the 4-component unit field φ̃a(x) inside

infinite radius sphere R = ∞.

Existence of topological solitons with integer

topological charge Qtop is not a priori excluded.

To find TSs one can use (i) hedgehog ansatz for

isospinor field with chosen Qtop; in the simplest case

Qtop = 1 it takes the form

φ̃4 = cosψ(r) · f(r), φ̃3 = sinψ(r) · cos θ(r) · f(r),

φ̃2 = sinψ(r) · sin θ(r) · sinφ(x, y) · f(r),

φ̃1 = sinψ(r) · sin θ(r) · cosφ(x, y) · f(r),

sinφ = y/
√

(x2 + y2), cosφ = x/
√

(x2 + y2), (6)

here φ(r), θ(r) and f(r) are to be found by min-

imization of topological lump energy and (ii)

generic 3-term ansatz for D = 3 Yang-Mills solitons

(Aa
0 = 0):

gAa
i = εiak

xk

R2
s(R)

+
b(R)

R3

[

(δiaR
2
− xixa) +

p(R)xixa

R4

]

,

i, k = 1, 2, 3 R2
= x2

+ y2
+ z2. (7)

Study of Topological Solitons in the SU(2)-Higgs

model is in progress.

Note that the SU(2)-Higgs model does not sup-

port TDs, because the 4-component unit field de-

fined on the sphere S2 has no nontrivial topological

properties. This however does not mean that there

is no possibility for existence of TSs in this model

because maps R3
comp → S3 are divided into classes

with different integer topological charges. This ex-

ample shows that usage of the generic term soliton

for TDs and TSs can lead to erroneous conclusion.

In paper [9] an attempt was undertaken to study

nonperturbative properties of models comprising

the Yang-Mills fields in Coulomb gauge. New

ansatz was proposed for classical description of

extended string-like configurations in the D = 2

Coulomb gauge SU(2) gluodynamics which can be

used when studying interquark gluonic strings in

mesons. Applying Coulomb gauge condition and

hedgehog ansatzes allowed to separate angular and

radial variables and obtain expressions for Hamilto-

nian densities for D = 2, 3 pure SU(2) Yang-Mills

models and D = 3 SU(2)-Higgs gauged nonlinear

σ-model.
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